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Abstract. The number of nearest neighbours of like atoms in an alloyed surface layer is 
derived from correlation functions of higher order for a square lattice gas with nearest- 
neighbour attraction and next-nearest-neighbour repulsion. The correlation functions and 
the position of the phase transition are determined by an extension of the Bethe-Peierls 
cluster approximation and by Monte Carlo simulation. Qualitative agreement with existing 
experimental data on the number of nearest neighbours indicates that both interactions are 
important. 

1. Introduction 

Recently, the method of perturbed angular correlations (PAC) was used to derive the 
distribution of the number of nearest neighbours of like atoms in a surface alloy of Cu 
with a few per cent of In (Klas et af 1987,1989). The In atoms, a small fraction of which 
are radioactive, are deposited on the (100) Cu surface. At temperatures above about 
200 K they are believed to penetrate into the surface layer of the Cu crystal, and to 
occupy regular lattice sites there. In this way a surface alloy is formed. In the PAC 
measurement a threefold splitting of frequencies was observed. This was interpreted in 
terms of three different atomic environments of the radioactive In atoms with zero, one 
or more than one (i.e. two, three or four) other In atoms as nearest neighbours. Following 
this interpretation, the relative frequency of different numbers of like nearest neighbours 
of In atoms in the surface alloy was determined. This paper attempts to explain these 
experimental results by a model calculation for a two-dimensional lattice gas in thermal 
equilibrium. 

We choose a lattice gas on a square lattice with attractive forces between pairs of 
nearest neighbours and repulsive forces between pairs of next-nearest neighbours. The 
Hamiltonian of the system is given by 

("1 ") 

where V > 0 and W > 0 are the interaction energies and ni denotes the occupation 
number (1 or 0) of lattice site i. In the first term the summation is over nearest-neighbour 
pairs and in the second one it is over the next-nearest-neighbour pairs, located on 
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Figure 1. The cluster used for the 5 x 5 approxi- 
mation. The circles mark the sites that are con- 
sidered for the calculation of the probabilities 
f , ( T ) .  One representative for each set of equiv- 
alent sites is denoted by a Roman numeral. 

diagonal lines (e.g. (9,O) and (1,l) in figure 1). Since in the following the grand canonical 
ensemble is used, the chemical potential ,u is included in the Hamiltonian. 

The probabilities for the different numbers of nearest neighbours can be expressed 
by static correlation functions of higher order, which we calculate using an extension of 
the Bethe-Peierls approximation. The approximation used has been tested previously 
for the case of only repulsive forces between nearest neighbours (Frobose and Jackle 
1985, 1986). It was found that, even in the limiting case of infinitely strong repulsion, 
this approximation leads to results in good agreement with Monte Carlo simulation. 
Here we apply the same approximation scheme to the more complicated case of attractive 
forces between nearest neighbours and repulsive forces between next-nearest neigh- 
bours. 

In section 2 we present the calculations for a homogeneous single-phase system. 
Since the phase separation occurring in our model might also be relevant for the 
interpretation of the experiments, the phase diagram is calculated in section 3. In order 
to test the quality of our approximations we performed Monte Carlo simulations for the 
system in the single-phase state for the case of only nearest-neighbour attraction. They 
are reported in section 4. In section 5 we compare our theory with the experimental 
data. 

Another approach to the problem was given by Dieterich etaZ(l987). They calculated 
the distribution of the number of nearest neighbours of like atoms by Monte Carlo 
simulation for a two-dimensional diffusion-reaction model, in which diffusion is 
governed by cluster kinetics rather than atomic interaction potentials. 

2. The probability distribution of the number of neighbours 

The probabilityfo that some particle (e.g. the particle at site 0 = (0,O) in figure 1) has 
no neighbours around it is given by the conditional probability that the sites 1 = (1, 0), 
2 = (0, l), 3 = ( - 1 , O )  and 4 = (0, -1) are empty if site 0 is occupied. Thusfo is given by 

fo = (no(1 - n1>(1 - n2)U - n d ( 1  - n4>)/(no> (2 . lu)  

where the angle brackets indicate thermal averages; (no) is the concentration c. The 
numerator of the expression ( 2 . 1 ~ )  can be decomposed into a sum of thermal averages 
of occupation numbers (ai) ,  (ninj>, (ninjnk), . . . , (non1n2n3n4), which are, apart from a 
normalisation factor, n-particle correlation functions up to fifth order. 
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Similarly, f l  is given by the conditional probability that just one nearest-neighbour 
site i (i = 1 ,2 ,3 ,4 )  of a particle at site 0 is occupied while the others are vacant; since 
the probability is the same for each nearest-neighbour site, we obtain 

(2.lb) 

In the same way all the other probabilitiesh(1 = 0, . . . , 4 )  can be expressed by n-particle 
correlation functions. 

Since only short-range correlations are involved, a Bethe-Peierls cluster approxi- 
mation is appropriate. A small cluster consisting of only the centre atom with its 
nearest neighbours is not sufficient, because the correlations within the second and third 
coordination shells are relevant for those in the first. Therefore, the approximations 
were performed for larger square-shaped clusters of lengths 3 and 5 lattice constants, 
respectively (figure 1). The 5 x 5 cluster was introduced because the smaller cluster 
might appear not to take into account properly the next-nearest-neighbour interaction. 
For both cases, the approximations produce satisfactory results, the differences giving 
an estimate of the errors. 

In the present extension of the Bethe-Peierls approximation, the chemical potential 
at the centre site (0) of the cluster is taken as the bulk chemical potential p, whereas the 
chemical potential for all the other sites is allowed to be different in order to take into 
account the effect of the medium surrounding the cluster. It should be noted that for the 
case of the 5 x 5 cluster one might argue that only the chemical potential at the border 
sites should be modified, since only these are in contact with the medium. However, 
since the inner shells of the cluster are also influenced by the surrounding medium, it is 
reasonable to admit a deviation of the chemical potential for all sites but the centre site. 
For sites that are equivalent with respect to symmetry, the effective chemical potentials 
must be equal. This condition reduces the number of parameters. Thus there are only 
two different effective chemical potentials I ( ' )  and p(") for the 3 X 3 cluster and three 
additional chemical potentials #'I), ,U('') and ,U@) for the 5 x 5 cluster. 

Within the Bethe-Peierls approximation, the effective chemical potentials p(') 0' = 
i, ii and j = i, . . . , v, respectively) are determined self-consistently in such a way that 
the occupation probability is the same at all sites of the cluster: 

(no) = (n , )  = (n,J (2.2a) 

for the 3 X 3 cluster, which must be supplemented by 

(2.2b) 

for the case of the 5 X 5 cluster. 
The grand canonical partition function Z,, of the cluster can be written in the form 

Z,, = A + BZ 

where z denotes the bulk fugacity exp[ -p/(kBT)]. A and B depend on all the effective 
fugacities z(j) = exp[-p(j)/(kBT)] but not on z .  A and B are evaluated directly by the 
computer program. For the case of the 5 x 5 cluster the calculations can be simplified 
considerably by exploiting the symmetry of the cluster. Applying the idea of corner 
transfer matrices (Baxter et a1 1980) to this problem, at first a set of partial partition 
functions is evaluated for the upper-right quarter. Their values depend on the occupation 
of the sites (0, 0), (1, 0), (2,0), (0 , l )  and (0,2) (figure 1). Now for agiven configuration 
on the sites (O,O), (1,0), (2,0), (0, 1) and (0,2) the contribution to the total partition 
function is obtained as the product of four partial partition functions (one factor for 
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each quarter), which are selected from the previously computed set according to the 
occupation of their edges in the present configuration. The summation over all possible 
configurations, where again symmetry can be used for simplification, yields the total 
cluster partition function Zcl. 

The occupation probabilities for the single sites of the cluster are obtained as the 
thermodynamic derivatives of the cluster partition function with respect to z and d j ) ,  
respectively. However, these thermodynamic derivatives count the total number of 
particles on places with the same chemical potential. In order to get the occupation at a 
single site, the derivatives must be divided by the number of places Nj that are equivalent 
because of symmetry. We obtain 

, ( I )  az,, d i i )  az,, 
(nii) = -- (nJ = -- NiZCI  az(') NiiZCI a d " )  

(2.4a) 

(2.4b) 

for the 3 x 3 cluster, and in addition similar equations for the case of larger clusters. 

equations can be written in the form 
Using the concentration c and the temperature T as independent variables, these 

C A  z=-- 
1 - c B  (2.5a) 

For low concentrations the fugacities can be calculated from the non-linear equations 
(2.5) by iteration. 

With z and T as independent variables instead, a choice that would appear natural 
from the derivation of the equations, the numerical solution is more difficult because 
below a certain critical temperature T, the solution becomes non-unique as a conse- 
quence of the phase transition that the system can undergo. In the numerical treatment 
this leads to instabilities even at temperatures above T,. 

In this approximation for the computation of a correlation function 
g ( j l , .  . ., j,) = (n j ,  . . ., njn)/c" among n particles at sites jl, . . ., j n  anywhere in the 
lattice in terms of the fugacities, a set of sites with the same spatial arrangement is 
selected from the cluster. The correlation function is determined as the sum of the 
statistical weights of all those configurations of the cluster for which just the selected 
sites are occupied, divided by the total partition function of the whole cluster and c". 
Since in this approximation only a distinct part of the whole lattice is considered, 
translational invariance is not maintained. For this reason different choices of the 
set within the approximation cluster yield slightly different results for the correlation 
function. However, for the determination of the probabilitiesfi as defined by equation 
(2.1),  a highly symmetric configuration, a particle embedded in its surroundings, is 
considered. For this special problem it appears quite natural to locate the set at the 
middle of the approximation cluster. This ambiguity does not occur in the cluster 
variation method (Kikuchi and Brush 1967). However, in that approximation scheme 
the calculations are more involved than in the present paper. 
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Figure 2. The probabilities fi( T )  for the case of nearest-neighbour attraction only for (a) 
c = 0.04 and ( b )  c = 0.08. Full curves refer to the 5 X 5, broken curves to 3 X 3 cluster 
approximation. The vertical lines indicate the transition temperature. Monte Carlo data are 
included forf" (A),f ,(A) andf,, ( X ) .  

In the high-temperature regime (kBT % V) the interaction between the particles can 
be neglected. For this case the particles are randomly distributed andfi is given by 

f l  = (p") cy1 - c y - '  

where qn is the coordination number for nearest neighbours. For low concentrations, 
c ==3 1, f o  is largest among thefi, which means that the overwhelming part of the particles 
is isolated. 

The calculated probabilitiesfi(T) for 1 = 0 and 1 = 1 are represented in figures 2(a) 
and ( b )  for the case of nearest-neighbour attraction only, and for 1 = 0 , 1 , 2  in figures 
3(a) and (b)  for the case of an additional repulsive interaction W = 0.4V between next- 
nearest-neighbour pairs for the concentrations c = 0.04 and 0.08, respectively. In the 
experiments there is no means for the distinction of the particles having two, three and 
four nearest neighbours, so that only the sum of their contributions can be measured. 
Therefore we include fa*, which is defined as f2  + f 3  + f4.  Moreover, the temperatures 
of the phase transition for these concentrations are marked by vertical lines. Above the 
phase transition, the approximations for both cluster sizes are in good agreement with 
each other and also with the data obtained from Monte Carlo simulation. 

For the case of negligible interaction at high temperatures, equation (2.6) would 
yield fo = 0.85, f i  = 0.14 andfa* = 0.01 for the concentration c = 0.04. As can be seen 
from figure 2(a) at kBT = V(the maximum temperature considered in the present paper) 
most of the particles are still isolated but the values found for the probabilities (fo = 
0.67,f1 = 0.28, fa2 = 0.05) deviate considerably from the high-temperature values as a 
consequence of the attractive interaction. For the higher concentration of c = 0.08, the 
deviations are still larger because the interaction becomes more effective. 

The temperature dependence of the probabilitiesfi agrees qualitatively for the lower 
and the higher concentration, with the only difference being that the influence of the 
interactions is more pronounced for the higher concentration. When the temperature 
goes down, f o  decreases, whereas fi varies only slightly. Because of the attractive 
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Figure3.Theprobabilitiesfi(T)for thecaseofnearest-neighbourattractionandanadditional 
next-nearest-neighbour repulsion of W = 0.4Vfor (a) c = 0.04 and (6) c = 0.08. Full curves 
refer to the 5 x 5, broken curves to 3 X 3 cluster approximation. The vertical lines indicate 
the transition temperature. 
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Figure 4. The phase diagram for ( a )  W = 0 and ( b )  W = 0.4V. Full curves refer to the 
5 x 5, broken curves to 3 X 3 cluster approximation. The lower thinner curve in (a) 
represents the exact phase boundary. 

interaction, at lower temperatures the forming of clusters becomes more and more 
favoured and fz2 grows when the temperature decreases. When the temperature of the 
phase transition is reached, the system separates into two phases. Even at temperatures 
slightly below T, their concentrations are very near to 0 and 1, respectively, as can be 
inferred from the phase diagram in figure 4(a). Hence most of the particles are contained 
in the dense phase and at temperatures sufficiently below T, the contribution from 
particles of the dilute phase can be neglected. Therefore the present approximation is 
applicable at low temperatures, although homogeneity of the system is supposed for the 
derivation. In the dense phase all the particles are lumped together, so that most of the 
particles are surrounded by four neighbours. At such a low temperature, due to the 
growing off4,fa2 nearly reaches 1, whereasfo,fl,f2 andf3 approach 0. For this reasonfl 
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must show a maximum as a function of T.  The temperature at which f a 2  increases 
considerably is accordingly very near to the critical temperature (exactly, k,T, = 
0.567V). 

Taking into account an additional repulsive interaction of W = 0.4V between next- 
nearest-neighbour sites shifts the phase transition to lower temperatures by nearly a 
factor of 3. Since the next-nearest-neighbour interaction is most effective for particles 
with a nearest-neighbour shell consisting of two or more particles, shells with more than 
just one particle become more unlikely than surroundings with only one or no particle. 
Thus the formation of larger clusters is suppressed in comparison with the case of no 
next-nearest-neighbour interaction. As a result the transition temperature T, is reduced 
and the maximum in f , ( T )  is more pronounced. 

3. The phase transition 

As was mentioned in the previous section, the solution of the equations (2.2) for the 
effective fugacities z(i) is not always unique when z and Tare considered as independent 
variables. For temperatures below a critical temperature T, three different solutions are 
found for fixed z and T, an indication that the system undergoes a phase transition. 

When, on the other hand, c and Tare taken as independent variables, the solution 
of the equations (2.4) is always found to be unique. However, if we consider z as a 
function of c at fixed T, it turns out that z(c)  is no longer a monotonic function for 
temperatures lower than T,, as is required by thermodynamic stability, but shows a van 
der Waals loop instead. This situation is typical for approximations that contain the 
assumption of finding the same fixed density in every cell of a cluster (Hill 1956 appendix 
9). In general, the transition is determined by applying Maxwell's construction to the 
isotherm using the condition that 

C 1  J P ( C )  d c  = P ( C l ) ( C Z  - c1) = P ( C 2 ) ( C 2  - c1) (3.1) 
c 2  

where c1 and c2 are the densities of the homogeneous 'gas' and the homogeneous 'liquid' 
phase at equilibrium. For all concentrations within these limits the system is in the mixed 
two-phase state. 

However, in the case of the lattice gas with pair potentials only, the transition can be 
found much more easily due to the particle-hole symmetry of the lattice gas (Hill 1956 
chapter 41, Binder and Kalos 1980). By the transformation S, = 2nj - 1 it can be shown 
that the lattice gas is equivalent to the Ising magnet (occupied sites corresponding to 
the spin-up state, empty sites to the spin-down state). The quantity B = 
(2p + q N v  - q"W)/4 plays the role of the external magnetic field, where qN and q" 
are the coordination numbers for nearest and next-nearest neighbours, which are both 
4for the square lattice gas. Since the Ising Hamiltonian with pair interaction is symmetric 
with respect to the simultaneous reversion of all spins and the magnetic field, the lattice 
gas shares the symmetry properties when particles and holes are exchanged and the 
chemical potential is replaced by -(,U + qNv - q"w. This symmetry property implies 
the relation for the chemical potential p as a function of c when Tis fixed: 

Consequently the isotherm p ( c )  has a point of symmetry at c = 0.5, p = 
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- (qNV - qNNW)/2. Since in the Bethe-Peierls approximation particle-hole symmetry 
is preserved, the approximate solution must show up the same symmetry property as 
the exact solution. Hence the horizontal line in the phase diagram from Maxwell’s 
construction must pass through this point for equation (3.1) to be fulfilled. Therefore 
the condition (3.1) may be replaced by the simpler requirement ,U = -(qNv - qNNW)/ 
2 for the determination of the phase boundary of the lattice gas. 

It should be noted, however, that this simplification relies on the fact that only pair 
potentials are considered in the present paper. The symmetry argument would not apply 
if interactions of higher order were taken into account. 

In the language of the Ising magnet the phase boundary is given by the zero- 
field magnetisation curve, which is known exactly for the case of nearest-neighbour 
interaction only. We use it for testing the quality of the approximation for the case 
w=o .  

The point of symmetry represents one of three possible solutions for T <  T,. 
However, it has no physical meaning. The two other solutions determine c1 and c2 ,  the 
concentrations at the phase boundaries for a given temperature T. From equation (3.2) 
we infer 

c1 + c2 = a .  (3.3) 
By determining c1 and c2 as a function of temperature the phase diagram is obtained. In 
figure 4(a) the exact phase diagram from the magnetisation curve as found by Onsager 
and Kaufmann and Yang (Hill 1956) is compared with that obtained by the Bethe-Peierls 
approximation for both cluster sizes. At  temperatures not too near to T, ( T  s O.7Tc) or 
equivalently for concentrations c with c s 0.05 or c 2 0.95, respectively, the agreement 
between the approximate curves and the exact curve is very good. Approaching the 
critical temperature such a good accordance cannot be expected, because the phase 
transition becomes more and more of second order in character. Therefore, the import- 
ance of the long-range fluctuations, which cannot be treated adequately by such a small 
cluster, grows when T, is approached. With this in mind, a deviation of about 10% from 
the exact value near to T, appears to be acceptable. 

When in addition the repulsive next-nearest-neighbour interaction is taken into 
account, there is no longer an exact solution available. From the observed changes when 
the cluster size is enlarged from 3 X 3 to 5 x 5 we conclude that the precision will be 
sufficient in the range of concentrations relevant for the experiments. It is only for the 
immediate environment of the critical temperature that we expect deviations of the same 
order of magnitude as in the case without next-nearest-neighbour repulsion. 

4. Monte Carlo simulation 

The system with nearest-neighbour interaction only was also investigated by Monte 
Carlo simulations for a square lattice with SZ = 256 X 256 sites. Periodic boundary 
conditions were applied. The temperatures were chosen within the range from kBT = 
0.5V up to 1.OV. For kBT lower than 0.5V some indication for critical slowing down 
because of the phase transition was observed. An inspection of the particle configurations 
at these low temperatures showed that the system wouldcorrespond to a two-component 
system with one big cluster and only a few particles around it rather than to a homo- 
geneous system. Therefore, the temperature range was not extended to still lower 
temperatures. 
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The simulations were carried out at a fixed number of particles. According to the 
desired concentration N = cS2 particles were distributed randomly in the lattice to get a 
starting configuration. The Monte Carlo procedure consisted of choosing randomly a 
particle and an empty site from the lattice. The gain in energy A E  when the selected 
particle was moved to the empty state was calculated. When it turned out to be negative, 
the particle was moved to the new position, otherwise the move was only executed with 
probability exp[-A.E/(kB7')]. After a period of thermalisation, the numbers of like 
nearest neighbours were periodically evaluated in time intervals of 50 Monte Carlo steps 
per particle. The averages are represented as symbols in figures 2(a) and (b) .  The results 
of the Bethe-Peierls approximation for the 5 X 5 cluster are in full agreement with the 
Monte Carlo data. 

5. Comparison with experiment 

In this section we compare our results with the experimental data for a sample of a Cu 
crystal covered by a 7% In surface layer as shown in figure 5 (Klas et a1 1987). The 
experimental data and the calculated probabilities show similar behaviour as functions 
of T for both cases of W = 0 and W = 0.4V, respectively. However, the qualitative 
agreement is significantly better when the additional repulsive next-nearest-neighbour 
interaction of W = 0.4Vis taken into account. From the comparison of the temperature 
dependence of the experimental fo with our calculations we estimate V / k B  to 
1700 t 200 K. The experimental probability fi shows a relatively high maximum with 
a value of about 0.75. This cannot be reproduced by the present calculations even 
when W is increased. The experimental values forfa?. appear too small compared with 
the Bethe-Peierls approximation. 

6. Conclusions 

The model calculation presented above shows that the experimental findings of Klas et 
a1 (1987) can be qualitatively explained by a lattice-gas model with relatively simple 
atomic interactions. This qualitative agreement lends support to the interpretation of 
the experimental results by their authors. It shows that both attractive and repulsive 
interactions are important. The agreement is not quantitative, however. By increasing 
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the parameter W of the repulsive interaction between next-nearest neighbours, the 
agreement between the data and the calculations can still be improved slightly. In the 
present paper Wwas deliberately fixed at 0.4V, since for W > 0.5Vnew phases become 
stable at sufficiently low temperatures and the phase diagram becomes more complex. 
The discrepancies between the calculated and the measured temperature dependences 
of the distribution of the number of like atoms may be due to the existence of more 
complicated atomic interactions as compared with the present model. 

Since in our model phase separation occurs at low temperatures, it would be inter- 
esting to explore the equilibrium properties of the surface alloy at temperatures below 
200 K by very slow cooling. 
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